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ABSTRACT

A class of probability density estimates can be obtained by penalizing

the likelihood by a functional which depends on the roughness of the logarithm

of the density. The limiting case of the estimates as the amount of smoothing

increasing has a natural form which makes the method attractive for data

analysis and which provides a rationale for a particular choice of roughness

penalty. The estimates are shown to be the solution of an unconstrained

convex optimization problem, and mild natural conditions are given for them to

exist. Rates of consistency in various norms and conditions for asymptotic

normality and approximation by a Gaussian process are given, thus breaking new

ground in the theory of maximum penalized likelihood density estimation.
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SIGNIFICANCE AND EXPLANATION

The basic problem considered is the estimation of a probability density

function f given observations from the density. This problem arises

*, virtually wherever data are collected, and is of particular interest in

medical and engineering applications. Density estimates are useful for

exploring properties of the data and for presenting data in a way comprehen-

* ,sible to the layman. They are also used for constructing versions of various

statistical techniques (for example in automatic diagnosis and pattern recog-

nition) which do not depend on specific assumptions about the underlying model.

A particular case of the estimates of the present paper is the

following. Given data X1,...,X,, choose the estimate f to maximize
-1 lo n (/x 3o ~)1

2I log {d/ l3fog dx, subject to f 1 1. The
* i=1

first term is, in a sense, the goodness of fit of 9 to the data, while the

integral is a penalty for how 'wiggly' the estimate is. The parameter A

controls the amount by which the data are smoothed to obtain the estimate. As

the parameter A tends to infinity, the estimate converges to a normal

density fitted to the data, and thus the definition of an 'infinitely

smoothed' estimate is very natural; that is the advantage of the formulation

of this paper over previous methods.

Because of their implicit definition, density estimates obtained in this

way are rather intractable and little is known about their behavior. In this

paper several new results on the large sample behavior of the estimates are

tobtained and so the work should help considerable in the understanding of
roughness penalty procedures. In addition a characterization of the estimates

as the solution to an unconstrained convex optimization procedure is given;

apart from its mathematical value, this should be very useful when computing

the estimates in practice.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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ON THE ESTIMATION OF A PROBABILITY DENSITY FUNCTION

BY THE MAXIMUM4 PENALIZED LIKELIHOOD METHOD

* B. W. Silverman*

I* INTRODUCTION.

Good and Gaskins (1971) introduced the idea of roughness

penalty density estimation. Their idea was to use as an estimate

that density which maximized a penalized version of the

likelihood. Given observations X I **"Xn' the penalized log

likelihood is defined as

W(f) = log f(ci) - aR(f)

where R(f) is a 'flamboyancy functional' such as f (f") and

the parameter a controls the amount by which the data are

smoothed to give the estimate. (Use the convention throughout that

unqualified sums are over the range i = 1 to n.) Without the

roughness penalty term the likelihood is unbounded above;

intuitively the maximum likelihood estimator is a sum of delta

function spikes at the observations. The Good-Gaskins formulation

can be given a Bayesian justification; see their paper for

details. An excellent exposition of penalized likelihood estimates

is given by Tapia and Thompson (1978).

*School of Mathematics, University of Bath, Claverton Down,
Bath BA2 7AY, England

Sponsored by the United States Army under Contract
No. DAAG29-80-C-0041.
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in this paper a variation of the Good-Gaskins estimator is

discussed. For compelling reasons given in Section 2 below, the

logarithm of the density - rather than the density itself - will be

penalized for roughness. In Section 3 it will be seen that the

resulting constrained minimization can be replaced by an

unconstrained convex optimization. Section 4 is concerned with

conditions for existence of the estimator; these turn out to be

mild and elegant.

In the remaining sections, the asymptotic properties of the

estimator are discussed. Very little is known about the

asymptotics of any roughness penalty methods of density estimation

beyond the consistency (in a very strong norm, under quite

restrictive conditions) proved by de Montricher (1981), and also

the results for a related estimator proved by Reiss (1981). Some

rates of convergence have been obtained by Klonias (1981); though

his results are for different estimators than ours, they appear to

be weaker insofar as a comparison is possible. For the estimators

of this paper far more can be deduced. Sections 5 to 8 below lead

to proofs of consistency with rates in a variety of different

norms. In Section 6 a linear approximation is developed which is

of considerable conceptual, as well as mathematical, value. The

main consistency results are given in Section 8. The question of

asymptotic normality is discussed in Section 9, where a uniform

approximation of the estimator by a Gaussian process is given.

-2-



2. DEFINITION AND MOTIVATION.

Practically all density estimation methods have the property

that the limiting estimate as the amount of smoothing decreases is

a sum of spikes at the observations, but what happens as the amount

of smoothing increases depends on exactly what method is being

used. It turns out that roughness penalty estimates with a

suitable penalty functional have a very attractive property, best

illustrated by considering a special case. Suppose that the

penalty

R(f) J f" {(d/dx) 3og f(x)}2 dx

is used. Then, in the sense made clear in Theorem 2.1 below, the

limiting estimate as the parameter a tends to infinity will be

the normal density with the same mean and variance as the data.

Thus as a varies the method will give a range of estimates from

the 'infinitely rough' sum of delta functions to the 'infinitely

smooth' maximum likelihood normal fit to the data.

.4 Computational and mathematical difficulties aside, this

observation presents a very strong case for the use for density

estimation of the roughness penalty method with penalty RN. Since

one of the objects of non-parametric methods is to investigate the

effect of relaxing parametric assumptions, it seems sensible that

the limiting case of a non-parametric density estimate should be a

natural parametric estimate. These remarks also give a satisfying

rationale for the choice of roughness functional. Previously this

-3-



choice has been made either in an ad hoc way or for reasons of

mathematical or computational convenience.

Another advantage of this formulation is that the functional

w depends only on the logarithm of the density and so any density

estimates obtained will automatically be positive. This remark is

further elucidated below in Section 3 which deals with conditions

under which the functional w has a maximum. It should also be

noted that the log density is itself a very natural quantity to

escimate, particularly if the estimates are used to estimate
"-.

likelihood functions, or for non-parametric discriminant

analysis. Leonard (1978) has used a Bayesian approach to density

estimation in which a stochastic process structure is placed on the

log density; this differs from our approach both in its motivation

and in some of its detail, but is nevertheless another example of

penalizing for roughness in the logarithm of the density.

It is possible to define other roughness penalties according

to other perceptions of 'infinitely smooth' exponential families of

densities. The essential property, easily checked for the case

discussed above, is that R(f) should be zero if and only if f

is in the required family. For example, for data on the half line,

R(f) - f {(log f)"12 will give rise to exponential densities
0

being the limiting case, while on the circle

R(f) - f {(log f)"' + (log f),12 will have as the infinitely

smooth family the von Mises densities defined by

-4-



f 0) cc exp{K cos(0 - 0

and discussed in detail by Mardia (1972).

We conclude this section with some definitions and the theorem

which gives the form of the limiting estimates. Suppose that the

domain of definition of the estimates and the set in which the

dobservations lie is a connected set n in Rd . A space such as

the circle is considered to be an interval in R with periodic

boundary conditions placed on all the functions consideredl the

imposition of these boundary conditions will not affect any of the
-I

results of this paper.

Suppose that D is a linear differential operator of the form

D(g) = c (a .. " cd

where the sum is over all vectors a of non-negative integers

satisfying

1 ai 4 m

for some fixed integer m. Assume that at least one of the

coefficients c(a) for I ai = m is non-zero. The results of

Sections 2 and 3 will also hold where the coefficients c(a)

depend on x, but for the subsequent work it is assumed that there

is no dependence of this kind. Note that there is no constant term

in the definition of D; D(g) depends only on derivatives of g.

Define the non-negative definite bilinear form ( , I by

(glg 2] = f D(gl)D(g 2)

1 -5-



here, and iubsequently, unqualified integrals are taken to be over

9 with respect to Lebesgue measure.

Let S be the set of real functions g on Q for which

(i) The (m - I)th derivative(s) of g exist everywhere and

are piecewise differentiable.

(ii) [g,g] ( m.

(iii) f eg < m

Then given independent identically distributed observations

Xl,...,Xn on 2, our estimate g of the log density underlying

the observations will be the solution, if it exists, of the

constrained optimization problem
-I

maxr n g , - 1 Mg,g

subject to g in S and f eg  1. The substitution X 2a/n

has been made to simplify some of the mathematical expressions

below. Our estimate f of the density itself is given by

f=exp(g).

The null family of the quadratic form [ , ] will be

defined to the collection of densities f on 9 for which

(log f, log f] is zero. It is easily shown that the null family

is an exponential family, with at most (m - 1) parameters.

The following theorem gives a sense in which the 'infinitely

smooth' estimator has the required form.

-6-
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Theorem 2.1. Provided f is a density with log f in S,

define

1 1
WAXfM = n log f(Xi) -Aclog f, log f)

i= 1

Let f be the maximum likelihood estimator within the null family

based on X , ... ,Xn; suppose the data are such that f exists.

Then, given any density f * f with log f in S, for all

sufficiently large A

-A) (f ) > f

Proof.

If f is not in the null family then ws(f - as A + - while

W (f ) remains fixed. If f is in the null family then

W (f) - Wf M [log f,(x i ) - log f(Xi)1 > 0A f o  X Af n i

by the definition of f as a maximum likelihood estimate. In

either case the conclusion of the theorem holds, completing the

proof.

Let f denote the density (if it exists) which maximizes

, then it would be of interest to investigate further in what

senses f, f% as A + -. We shall not consider this question

further in this paper.

3. THE ESTIMATE AS AN UNCONSTRAINED OPTIMUM.

One of the reasons that roughness penalty density estimates

present computational and mathematical difficulties is their

-7-
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implicit definition as a solution to a constrained optimization

problem. The results of this section show that our estimates can

be found as the unconstrained minimum of a strictly convex

functional without any unknown Lagrange multipliers. This

observation has both mathematical and computational value, and is

the foundation of the theoretical work given below. Computational

aspects will not be considered here, but the result makes it

possible to use standard methods for unconstrained convex problems

to find the estimator; these will be explored in subsequent work.

For g in S and fixed X > 0, write

1
A0 (g) x )dg,g] - 2 g(X i ) (3.1)

and

Adg) - j(g,g] + f eg - -e g(X) (2n 1(3.2)

We show that the unconstrained minimum of A(g) is identical with

the constrained minimum of A0(g).

Theorem 3.1. The function g in S minimizes A0 (g) over g
in S subject to f eg - I if and only if g minimizes A(g)

over S.

Remarks. Note first that the theorem says nothing about the

existence of gi this question is considered in Section 4 below.

Our reason for proving this result first is that we shall only deal

with the existence question under conditions on Q which are not

needed for the present argument.

It is easily shown that A is a strictly convex functional

on S, as defined on p. 154 of Tapia and Thompson (1978) and

-8-
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hence, by their Theorem 2 on p. 160, it is an immediate corollary

of the present theorem that g is unique if it exists at all.

Proof of the Theorem.

Given g in S, define g* - g - log f e , so that

f exp(g*) = 1. Since , ] only involves derivatives,

(g*,g*] = [g,g]. Therefore it follows by elementary manipulations

that A(g*) = A(g) + 1 - f eg + log f eg and so A(g*) 4 A(g)

with equality only if f eg = 1, since t - log t > I for all

t > 0, with equality only if t = 1. Therefore, g minimizes

A(g) if and only if g minimizes h(g) subject to eg = 1; but

subject to f eg = 1, A(g) and A0 (g) + 1 are identical, and so

the proof of the theorem is complete.

Note that the proof of the theorem depends crucially on the

fact that the penalizing functional involves only derivatives.

4. EXISTENCE OF THE ESTIMATORS.

A discussion of the existence properties of the Good-Gaskins

estimators is given in Chapter 4 of Tapia and Thompson (1978),

drawing on material from de Montricher, Tapia and Thompson

(1975). It is clear from that work both that the estimators

defined in this paper cannot be shown to exist by existing work,

and also that the question of existence can be a little delicate.

The theorem of this section gives a natural and elegant

condition for the existence of the estimates. For convenience the

-9-

I I" " P" "-" -'" " -



.9

I

theorem is stated for the special case of univariate bounded n,

but remarks about generalizations are made below.

Theorem 4.1. Suppose fl is a bounded interval in R , possibly

subject to periodic boundary conditions. Given observations

X1,o..,X n  in n, the functional A as defined in (3.2) above

will have a minimizer in S if there is a maximum likelihood

estimator based on X1 ,...,X n  in the null family.

Remarks. The condition of the existence of a maximum likelihood

estimate in the null class is, of course, a very mild one. In the

case where n is the circle and the null class is the von Mises

-' family, for example, all that is required is at least two distinct

data points. It is interesting to compare the existence condition

to the condition given in a different context for the existence of

the estimator considered by Silverman (1978b) it is presumably

possible to extend the technique of this proof to deal with

penalized likelihood estimators of quantitites other than

probability density functions.

Proof.

The proof depends on properties of reproducing kernel filbert

spaces; see, for example, Oden and Reddy (1976) for an account of

these. Given g, and g2 in S, define

( g 1 g2 ) = gl1 g 2] + f g1g 2  (4.1)

and

Ig1 110  (g1 ,g1)1 "

-10-



Since 0 is bounded, the norm I. 0  will make S a reproducing

kernel Hilbert space equivalent to the Sobolev space H(m).

Define subspaces SI and S2 of S by

s= (g in S: (g,g) - o and f g- O

S2 =[g in S: f g - 0 and (g,gI) -0 for all gI in SI

If p is the largest eigenvalue less than one of the reproducing

kernel in S, then, given g2  in S2,

g212 >-1f2
g20  p g2

and hence
*g2,g21 

) (1 - p-ig2

Since 9 is bounded, by the conditions imposed on m and 9, the

Sobolev embedding theorem implies that the sup norm is continuous

with respect to I. 0  and hence there is a constant C such that,

for g2  in S92 20

suplg 2l 1 C[g 2,g2 2 (4.2)

Define spaces S0  S* and S; by

so M {g in S: f g - 01

S* = (g in S: f eg  1},

S = {g in S: f eg  I and (g,g] = 01

Define a functional A* by, given g in S, defining A0  as in

(3.1), I

A*(g) - A0(g) + log f e g

It is easily shown that A*(g) = A*(g + c) for all constants c

and hence that the mappings g + g - log f eg  and g g -f g

get up an A* preserving (1-1) correspondence between So  and

-11-
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S*. Since A0  and A* coincide on S*, it follows that A0

will have a minimum in S* if and only if A* has a minimum in

SO* A minimum of ho on S* is, of course, precisely the

estimate we are seeking; therefore it will suffice to show that

there is a minimum of A* on SO*

Given any g in SO, write 9 =91 + g 2 with g, in S,

and g2 in S2  Then

*1 , g 1 xi

A*(g) - )Xg,g] + log e9 + 1 - g(X

2 X92'g 2] n 2

g1
+ log{exp(inf g f e g  + I g (x

using the fact that (g,g] - (q2,g2]. From (4.3) it follows that

A*(g) X f Xg 2 ,g 2 ] - n I g2 (Xi )

(4.4)

+ inf 92 + A*(gl) + 1

The (1-1) correspondence defined above between So  and S* gives

an A* preserving correspondence between SI and S*. On S*,

A is precisely g(X1 ), and so the log density g of the

maximum likelihood estimator within the null class will be a

minimizer of A* in S*; it follows that - f g will be a

minimizer of A* in S1. By Cauchy-Schwarz it is easily shown

that A* is strictly convex on S, and hence, since S, is a

finite dimensional normed space on which A* has a minimum, it can

be shown by elementary functional analysis that there exist

-12-
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constants CI > 0 and C2 such that, for g, in SI,

I + A*(g ) > ClIgl 0 + C2 . (4.5)

Next we consider the terms of (4.4) involving g2" Using

inequality (4.2) it follows that, for fixed X < 0, there exist

positive constants C3  and C4  such that

1 X (g,g] g (x ) + inf-2 n g2( ) 1 g2

1 A~g2 ,g2 ] - 2 sup Ig2 1 (4.6)

3 g2  C4 1g2 l 0

Substituting (4.5) and (4.6) into (4.4) gives, for g in So'
• 2

A*(g) > C IglI0 + C2 + C31g210  C4 Ig2 10

(4.7)
0 C5 (Igll 0 + Ig 2 10 ) + C6

for suitable constants C5 > 0 and C6 , by elementary algebra.

From (4.7), using the triangle inequality,

A*(g) > C5 1gl0 ++ (4.8)

By Theorem 5, p. 162 of Tapia and Thompson (1978), it follows

that A* has a minimizer on 80, completing the proof of the

theorem.

The extension of the theorem to the case where n is a

bounded multivariate domain is straightforward provided that the

supremum operator is continuous with respect to the norm I1•I0

on S; this will entail conditions on 9 and on D, for details

of which see a text on Sobolev spaces. An extension to unbounded

-13-
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A will require a different technique of proof since it will no

longer necessarily be the case that f g2 < for g in S.

5. ASYMPTOTIC PROPERTIES - PRELIMINARIES.

In the remaining sections, the consistency and other

asymptotic properties of the estimators are studied. There has

been very little work on the consistency properties of maximum

penalized likelihood density estimatesl the main contribution is

the paper of de Montricher (1981), whose results do not seem to be

directly applicable to our estimates and who does not consider

questions of rates of consistency or of asymptotic distributions.

See also Klonias (1981). Consistency of a related class of

estimators has also been considered by Reiss (1981). The

techniques used in this paper are more akin to those used in

several papers of Wahba (e.g. Wahba, 1977) though some care is

needed because the functional A, though unconstrained, is not

quadratic.

For the remainder of the paper attention will be restricted to

the case where Q is a bounded univariate domain, possibly with

periodic end conditions. The extension to any particular

multivariate case will depend on the solution to the eigenvalue

problem of the differential operator D in the domain 0; once

that is solved the arguments of this paper will go through easily.

It will be assumed that the observations XI,*..,X are

independent and identically distributed with density f0  on n.

-14-



In order to make what is quite an involved argument a little more

transparent, rather stringent smoothness conditions will be placed

on fo, but it should be stressed that appropriate versions of the

theorems remain true under much milder assumptions, and can be

obtained by very similar techniques. These extensions are left to

the reader to investigate.

Let go - log fo. Assume throughout that, in the terminology

of Wahba (1977), go is very smooth, in other words that go and

its periodic extension have 2m derivatives on 1 and f go2m))2

is finite. In particular, assume that go is bounded above and

below. It will be convenient to prove results about the

convergence of the estimates of the log density rather than the

density itself, but only elementary calculus is needed to transform

these back to results about the density.

The minimizer of the functional A of (3.2) will be denoted

by g. The explicit dependence of j and related quantities on

the sample size, the values of the observations, and the smoothing

parameter will usually be suppressed, as will the dependence of the

smoothing parameter on the sample size. The basic strategem of the

consistency proof is first to study the properties of a function

g, (defined in Section 6 below) which is a linear approximation

to 4, and then to show that 4 and g, are sufficiently close

to allow results for j to be obtained. It should be kept in mind

throughout that although g, has desirable properties which help

one understand the behavior of j, the definition of g, depends

-15-



on the unknown density foi therefore gl is only a mathematical

device and cannot, in contrast to ^, be calculated in practice.

The remainder of this section consists of definitions and

lemmas which set up the technical machinery needed in the

subsequent sections. A first reader may find it easier to skip to

Section 6 and then to refer back as necessary. A more casual

reader could skip straight to Section 8, where the main results are

given.

Three different norms will be used in the study of

consistencyl these will be defined for g in S as follows:

2 2
. igi 2 - f g 2 f 0

Igl2 -sup Igl 1 (5.1)

2 g2o
Ig l " [g,g] + f *

Inner products ( >2 and ( >8 are defined by

(g'g 2 >2  f g1 g2 fo ;

< g1 1g2>8 - (gl g 2 ) + f g 1 g2 fo

since f0  is bounded above and below away from zero, the norm

I I is equivalent to the Sobolev norm on S - Hm(n), Suppose

-f V : V > 01 is a sequence of orthonormal eigenfunctions with

respect to the density f0  of the reproducing kernal of ( )S

1.e., for a sequence of eigenvalues (h V

-16-
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)S i ii
and

<*i*j )2 ' 6 ij

where 6 is the Kronecker delta. By standard arguments (see,
ii

for example, Riesz and Nagy, 1955), is identically equal to I

and the eigenvalues satisfy

I - X 11 A2) ....

Define the sequence p b

-1
", V

then it is immediate that

[i *i,P] - ij

When expanding elements of S in terms of the eigenfunctions, we

shall use an additional subscript (enclosed in brackets if any

confusion between subscripted functions and coefficients may arise)

to denote a coefficient. Thus, for example, we shall write

g o " goV , goof + go 1 1 +

g g %% = g(o) 0 + g(1 ) 1 + ...

Unqualified sums over v will be taken to be over the range

V - 0 to -. The asymptotic behavior of the eigenvalues can be

deduced using the following lemma, which says that replacing f0

by the constant function does not affect the rate of convergence of

the eigenvalues to zero.

Lemma 5.1. Suppose that the sequences AV and *V are defined as

above, and suppose that A* are the eigenvalues of the L2
V

-17-
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orthonormal eigenfunctions o of the inner product " as
V M

defined in (4.1) above. Then, for all v > 0, putting

p M 1 and p* -)-1 -1,
VV V

p inf f 0 ( p* P supf 0  (5.2)

Proof.

The eigenvalue p will satisfyiV

SM infe{g,g] f o -o 0  0, j - 0,...,v- 1, and f g2f 0 0 1)0 v 0

4 inf{[g,g] f g*f o M 0 and f g2 = (inf fO ) - 1  (5.3)

since the infimum is over a smaller set. By an analogous argument

to Riesz and Nagy (1955) p. 238, it follows from (5.3) that, taking

the supremum over elements ho,...,hV. 1 of S,

p < sup inf {(g,g] f ghj =0, J - 0,...,v- I

g

and f 2 (inf f01

-1 0

= (inf f

The other inequality of (5.2) is proved similarly, completing the

proof.

Corollary. There exist positive constants a and 8 such that,

for all v >O,

- 2m
V V

-18-
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Proof.

By standard properties of Sobolev spaces, it is easily shown that

the L2 orthonormal eigenfunctions of the inner product ( ,)0

-2m.
have eigenvalues X* which decay exactly at rate v To see

V

this, note that the eigenfunction expansion is precisely a Fourier

series expansion and that the eigenvalues are reciprocals of

polynomials in v of degree 2m. Now apply Lemma 5.1 to obtain the

rate of decay of X
V

Given any g in L 2(), it is now possible to give

expressions for the norms of (5.2) in terms of the coefficients of

the eigenfunction expansion of g.

Lemma 5.2. Suppose g is in L 2(2) and gV f gof 0 " Then

2 2

Ig1 2 = g(5.4)

IgI 2= X71 92 (5.5)

and, given e > 0, there exists C > 0 such that

gI2 r C , vl+cg 2 • (5.6)C 9V

Furthermore, if g is very smooth, then

X7 2  < 2 (5.7)

V V

-19-
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Proof.

Equations (5.4) and (5.5) are immediate from the definition of the

eigenfunctions and eigenvalues. The equations (5.6) and (5.7)

follow by considering Hilbert scales of spaces as considered, for

example, by Oden and Reddy (1976) Chapter 4. From there (p. 133)

1l+rc 2wilb
and the corollary above it follows that 9 vg will be

equivalent to the norm of the fractional Sobolev space of index

1
2(I1 + 0), and hence, by the Sobolev embedding theorem (see the

remarks on p. 109 of Oden and Reddy) the inequality (5.6) follows

at once. Similarly the norm i -2g2  is equivalent to the
A V V

* 2m
H M(f) Sobolev norm, proving the last part of the lemma.

The next lemma gives the asymptotic behaviour of certain

functions of the eigenvalues which will occur in Section 6 below.

The notation f 1 (A) - f 2 ( ) as A + 0 is taken to mean that

f 1)/f () and f 2()/f (A) are bounded as A + 0. The lemma

is a generalization of the estimates obtained by Wahba (1977) for

her A(A) and G(A).

Lemma 5.3. Given a < 4m - 1, as A + 0,

a

7 . a ~ ( a + 1 ) / 2 ,m

v-1 (1 + XP 2

and, provided go is very smooth, as X + 0, given b ( 2m,

pVgOV if b - 0

"1 (1 + XO)2 O(Xb/2m) if b > 0

-20-



Proof.

The first part is proved using the corollary to Lemma 5. 1 by

approximating the sum by an integral in the manner of Wahba (1977)

p. 660; values for the implied constants can be obtained by more

careful analysis. The second part is obtained by an application of

the dominated convergence theorem. Note that making milder

smoothness assumptions on go will affect the rates in the second

part of the lemma. Some care is necessary if n is not a periodic

domain though, see Rice and Rosenblatt (1981). The final part of

this section concerns the sample coefficients of the empirical

distribution. Define a random sequence SV by

0  0

Then *lXi) for v > 0

The v depend on n, but this dependence will not be expressed

explicitly. Some properties of the 8 are given in the following
V

lemma, the proof of which follows immediately from the facts that

0 1 and that the *V are orthonormal with respect to f0 "

Lemma 5.4. Given n, the sequence 8 satisfies

EB = 0 for all r; and

r __

: " -1
E ora s = n 6rs for r and s I.

It is now immediate, by the classical central limit theorem, that

for each v > 0, J/2 8 will have, asymptotically, a standard

-21-
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normal distribution. Indeed it is possible to provide a

simultaneous strong approximation of the sequence BV by a

-* sequence of normal random variables; this is done in the following

lemma, which is the last result of this section*

Lemma 5.5. On a suitable probability space, defining the sequence

as above, there existq for each n a sequence B
V V

of independent N(0,1) random variables such that, with

probability I,

1/2 -1
lim sup n (log n) sup vt' 8V C(f 0
n m v~'il

where C(fO) is a constant depending only on fo.

Proof.

Write BV I * (t)dFn(t) where Fn is the empirical distribution

function of the observations and then proceed as in the proof of

Propositions I and 2 of Silverman (1978a), approximating

n,2 - F)(t) by a transformed Brownian bridge Wn{F(t)) using
nn

Theorem 3 of Komlos, Major and Tusnady (1975). The 8are the
V

* 0
coefficients of the expansion of W [F(t)} in terms of the

n

eigenfunctions and are easily shown to have the required

structure. Defining Zn(t) as in Silverman (1978a) it follows as

on p. 179 of that paper that, using the fact that f *Vf0 is zero

for v > 1,

n(log n) In/2 , - -C f IV sup IZn(t)I . (5.8)
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For fixed f0, by p. 134 of Oden and Reddy (1976) there are

constants C1 , C2 (f0 ) such that

f IV;I c1 {f

.(m-1)/2m I 1/2m (59)C2 (f) v2 iV a

- C2(fo)Xl / 2m _ 0(v)
20

by the corollary to Lemma 5.1. To complete the proof substitute

(5.9) and (2) of Silverman (1978a) into (5.8).

6. THE LINEAR APPROXIMATION.

In this section the linear approximation g, to g will be

defined and studied; the question of the closeness of the

approximation will be considered in Section 7 below. The

approximation is linear in the sense that it is a linear function

of the transformed observations * (X i) and that it is the

solution of a certain linear system in a Hilbert space. It is this

linearity which leads to the tractability of the approximation.

Define a quadratic form Al for g in S by

n[I ~ ~ 1 + !ggo + gg.2 g(Xi)161
A1 (g) = )xg,g) + f (1 + (g-g + + n 0  (6.1)

The motivation behind the definition of A, is that it is the

quadratic form which has second order contact with the functional

-23-
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A at go. Furthermore, by Proposition 17 and Theorem 6 of

Appendix I of Tapia and Thompson (1978), the functional Al is

uniformly convex on S and hence has a unique minimizer g,

in S.

Though the function g, is, like j, defined implicitly, it

is straightforward to write its eigenfunction expansion explicitly.

Up to a constant, we have, for g in S,

A 1 (g) 1 X P 2 + g(o) + g2

n -1

-go, - n gV V(X ) (6.2)

1 2

- [ (Xp + l)g + )g

where we have used the fact that n- ' I  4(Xi) - 1. It follows

from (6.2) that the coefficients of g, satisfy

90 V V  (6.3)
91 VM I + XP

Studying these coefficients gives several asymptotic results for

go - g91  Notice that the form (6.3) can immediately be decomposed

into its systematic and random components, so that

E(gl- 1V )opvgoV(1 + p)1 (6.4)

-24-
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* 1 -I ] it I -l .I l l a .I ,

and

91V- Eg I V 11 + (PV1- 1  (6.5)

Consideration of (6.4) and (6.5) as A + 0 shows that there is, as

in most smoothing problems, a trade off between bias and random

error.

It is very straightforward to apply the results of Section 5

to give asymptotic properties of g1, and this is done in the

following theorem. Both the uniform and the L2  rates of

convergence will be required in Section 1, while the Sobolev rate

is included for its own interest.

Theorem 6.1. Defining g, as above, and using the definitions of

Section 5 for the various norms, as X + 0 and n +

2 _ n-1 I-1/2m + A251g1 - gO1 2 --

Big g0 12 0(n-1 X- 2m+1)/2m + OM

and, given 8 > 0,
Elg -g02 o-(-1 -I/M + (4m-1)/2m)

Proof.

From lemma 5.2 and (6.3) it follows that

2 0(+xPg 2
g - q012 - -gl gOv 1 2 - ' Vgv v

(1 + p 1

and hence, by Lemma 5.4

222
x 2 P 2v~ 1 2

EZ g g o 12 " 1 + -
v-0 (1 + X) 2  n v-1 (0 + AV)2
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Substituting the bounds given by Lemma 5.3 completes the proof of

the first part of Theorem 6.1. The second and third parts are

proved in exactly the same way, by first applying lrmma 5.2 to give

a bound for the appropriate norm of (g, - go) in terms of the

coefficients g V- g0 v, and then applying lemmas 5.4 and 5.3.

It is easy to deduce conditions under which g, will converge

to go in various norms. In addition optimal rates of convergence

can be obtainedi these will be discussed further after it has been

shown that, under suitable conditions, Ig - g I can be neglected

relative to 1gI - g0 o"

7. CLOSENESS OF THE LINEAR APPROXIMATION TO THE TRUE MINIMIZER.

In this section the closeness of gl to 9 will be

considered. The arguments are a little involved, mainly because

the functional A, while being strictly convex, is not uniformly

convex. The major part of the section is taken up with the proof

of the following lemma; at the end of the section a corresponding

result for the Sobolev norm is discussed. The notation 0p

denotes an order of magnitude in probability.

Lemma 7.1. Suppose the definitions and conventions of Sections 5

and 6 are used, and that A + 0 and n M-6 X + for some 6 > 0

as n + . Then, for all sufficiently small c > 0, as n +

- gl1 0 (XC (-n- X- /m += p

-26-

9. ____IIIIII_______________I_ _.......



Proof.

The proof of the lemma proceeds in several stages. First a new

approximation g14 to g is defined, for which it is the case that

the uniform convergence of to go will imply that j and

g1 are eventually identical. The function is the minimizer

of a functional AI; the derivative of AN at 9, can be bounded

in such a way as to enable rates of stochastic convergence to zero

of supig M - g11 to be obtained, and these rates are easily shown

to apply to supli - g11 also. Choose a number N such that

suplg0 I + 2 4 4

and define the function exp 4 by

r1 2 -14+(x +M) + (x + M) for x < -K;
exp14(x) -eXohrse

ex otherwise.

Define a functional A1  on S by

I I n
N(g) - X(g,gJ +f exp(g) -(X i)

i-i

and let j. denote the minimizer of A.; this functional is

easily shown to be uniformly convex as defined by Tapia and

Thompson (1978), and hence g, exists and is unique.

In the remainder of the argument, derivatives of functionals

will be used; these are Gateaux derivatives as discussed by Tapia

and Thompson (1978). Note first that A14 and A and hence their

first and second derivatives agree if supjgj 4 M; it is easy to

-27-
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4

show that these derivatives exist everywhere. By the strict

convexity of A and Ad, their respective minima correspond

exactly to zeros of A' and A' and hence 9 and will be
%

equal if supg 14 < M.

Defining A1 as in (6.1), since g, minimizes A1  it

will be the case that A (g1 ) is zero, in other words, for all

u in S,

X(91gu] + f u{1 + (g 1-g 0 )}f 0 - n-1 I u(Xi) - 0 ( (7.1)

Now, substituting (7.1), we will have

A'(gI)(u) - x(gl,u] + f u exp(g1 ) - n 1  u(Xi)

(7 *2)

- f u[exp(g1) - 1 + (g 1-g 0 ))exp(g 0 )] .

By elementary analysis, there exists a constant C such that,

provided suplg 1 - got < 1,

IA'(g 1 )(u)I 1 C f ful(g I - g) 2exp(g0 )

" "(7.3)
": 2

-C C suplul Ig - g0 12 i

by standard functional analysis, using the operator norms

corresponding to those defined in (5.1) above,

g ,(g, ) - go1 2  (7.4)- I 9,
Since, under the assumption suplg1 - gol < 1, it follows

a fortiori that suplg1l < M and hence %(g 1) - A'(gI).

-28-



Nov consider the operator Aj(g). Given any u in B,

A"(g)(U,u) - A(u,uj + f U 2exp_(g) 0 Xluu) + e - 2M f u2 f

" + *2M u2 -" ,--c(P + ,-2Z4 v1+eu2

V V

for any E > 0. By elementary analysis it follows that

A (g)(0,u) ) co .(1+)/2M 1 1+c 2
M"~)OU %,EX V

(7.5)

> CE A+)/2m (suplul) 214 C, £:

for suitable positive constants C and C by Lemma 5.2.M , E M,€

Now set UK - gl - j14. Apply Taylor's theorem to the function

(Of t) A'(i + tu )(u ) to obtain, for some 8, 0 < e < 1,

AI(g )(u) - A;(4M + ea)(u ,u ) • (7.6)
M I M 14) U 'M)

Combining (7.4), (7.5) and (7.6) it follows that

s(o1+)/2 12 .Cq 1  g1 2

C A (suplu I c suplu 1  02

so that, for a suitable constant CI, provided suplg1 - g01 < 1,

supIUI < ClA7(1+c)/ 2 m g1 - go1 2 • (7.7)

Under the conditions stated in Theorem 7.1, it follows from

Theorem 6.1 that

supIq - 901 + 0 in probability (7.8)

and hence

-29-



P(suplg 1 - 0 1) * 1 an n + m (7.9)

Again from Theorem 6.1 we have

S- 912 = 0 (n'1 1 / 2 m + A21 (7.10)
1 - 2 p

Combining (7.7), (7.9) and (7.10) gives, for all c > 0,

suplg1 - 41 0 1( - + A (4m-)/2m (7.11)

In particular it follows that suplg 1 - I + 0 in probabilityl

combined with (7.8) this implies that supi '14 - *01 + 0 in

probability, from which it is immediate that

P(supI,41 < N) + 1 as n +

by the remarks made near the beginning of the proof this implies

that

P(% * ) + 0 (7.12)

and hence the proof of the lemma follows from (7.11).

No attempt will be made to obtain a finer bound for

Ig - g 1 2  since the bound obtained from Lemma 7.1 will suffice.

A bound for the difference between g and g, in the Sobolev norm

is given in the following lemma.

Lemma 7.2. Under the same conditions as Lemma 7.1,

i - g11is 0 p( n-1-(2m+1)/2m + X)

as n tends to infinity.

-30-
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Proof.

The argument is very similar to the proof of Lemma 7. I. Since the

sup operator is continuous in the Sobolev norm it follows from

(7.4) that, for a suitable constant CS, provided

suplg 1 - g01 C ,

I*A1 (g 1 )Is c CsugI -goI2 ._ 2

By an argument similar to that used to demonstrate (7.5), using

Lemma 5.2, for all g and u in S we have, for a suitable

constant CMSM'

S 2

It can now be deduced that, provided suplg1 - gol < 1

1uMIS - o(A- 1 ) g 2

the remainder of the proof, making use of (7.12), exactly parallels

that of Imma 7.2.

8. THE MAIN CONSISTENCY RESULTS.

It is now possible to state and prove conditions under which

, is in various senses a consistent estimator of go and to give

rates for this consistency. These are given in the following

theorem. It should be stressed again that the conditions,

particularly those placed on the smoothness of go, can be

-31-
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weakened considerably by extending the arguments used in Sections

5, 6 and 7 above.

Theorem 8. 1. Suppose 0 is a bounded univariate domain, possibly

with periodic end conditions. Suppose the true density f 0  on fA

is bounded above and below away from zerol let go " log f0 .

Suppose the roughness Penalty (g,g] is defined, using a

differential operator of order m, as in Section 2 above, and that

the log density estimate g is defined as in Section 3 above,

based on independent identically distributed observations

Xl•.66,X n  from fo. Suppose that f (2m) )2 < and that

(2m-1)
*2mO is continuous on the periodic extension of fA.

Suppose throughout that the smoothing parameter X satisfies,

for some 6 > 0,

A + 0 and n + - as n +e

Then ' is uniformly consistent as an estimator of go and in

addition, for all c > 0,

SUP 19^ - gj 2 =o {A (nl A-1/m + X(4m-1)/2m)
Q 0 p

If, in addition, n (2/3)m-6A + as n + - for some 6 > 0,

then, as n + -,

(4_ o2fo on-1 -1/2m 2
f -go ) 2 o - Op(n- XA12 + )L2

and this rate is exactly attained. Defining the Sobolev norm

tgN2 .1g,g] +f 2 f O , provided A + 0 and nA(2m + l )/2 m + - as

n + e, the estimator is consistent for go in Sobolev norm,
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and, as n .,

2 (n l " ( 2 m+ l) / 2m) + ()•
1l gos Op p

The proofs of all the parts of the theorem are obtained by

combining the relevant part of Theorem 6. 1 with either Lemma 7. 1

(for the L2  and uniform consistency and rates) or Lemma 7.2 (for

the Sobolev consistency and rates). in all cases it is the

IgI - g01 part which dominates, the term 14 - g1 l being

negligible. The details are straightforward and are therefore

omitted.

It is possible to investigate optimal rates of consistency and
I

square convergence, corresponding to convergence of the estimated

density to the true density in the Illback-Leibler information

distance, the (exact) optimal rate of consistency is easily shown

to be O(n4 / (4 + 1)) attained when A - n2W(4 +  ) * This rate

of convergence near to O(n- 1) is of course a consequence of the

strong smoothness conditions placed on go. The corresponding

results for the other norms are left to the reader to

investigate. It is interesting to note that the optimal rate for

A for good estimation in, for example, the Sobolev norm will not

be the same as the optimal rate for mean square consistency. Thus

one will not necessarily obtain good estimates of the derivatives

of f0 by seeking good estimates of f itself, a point relevant

-33-
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to Silverman (1980) and the subsequent rejoinder of Good and

Gaskins (1980).

The question of strong consistency, as considered for slightly

different estimators by de Montricher (1981), is not considered in

this paper, though it seems intuitively clear that analogous

4 results to Theorem 8.1, possibly with slightly slower rates, should

be provable by suitable techniques. The question of the asympotic

normality of the estimates is considered in Section 9 below.

-4
9. APPROXIMATION BY A GAUSSIAN PROCESS.

To the author's knowledge, roughness penalty density

estimators are the only density estimators that have not been shown

under suitaible conditions to be asymptotically normal. It turns

out to be possible not only to show that the estimators discussed

in this paper are pointwise asymptotically normal but also to give

a rate of approximation to the estimators, suitably normalized, by

a Gaussian process. An approximation of this kind is more in

keeping with the modern theory of density estimators and opens the

way to proving results such as those of Bickel and Rosenblatt

(1973) and Silverman (1976) on the asymptotic behavior of certain

functionals of the estimates. It shows that the joint distribution

of the value of the estimator at several points is asymptotically

multivariate normal and also gives a rate of convergence to this

normal limit.

-34-
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Before considering the approximation itself, it is convenient

to consider some preliminaries. The notation and conventions of

this section will be, except where otherwise stated, the same as in

Sections 5 to 8 above. In particular all the conditions stated

near the beginning of Section 5 will be assumed to hold. Defining

the eigenfunctions V as in Section 5, define the function

R on n x f by

R (s,t) = V +v

V V

The function R is the reproducing kernel with respect to the

density f0  corresponding to the inner product

* A[g8g 2] + f g1g2f0 on S and is also the Green's function of a

certain differential operator; for the connections, see a modern

text on differential equations.

Define a function m (t) to be Eg1 (t), so that the
Tx

-i coefficients of mk  satisfy

° ma XV '09O( + Xpv )  •

It follows that

m (s) = f R (s,t)g0(t)f(t)dt (9.1)

so that m can be seen to be, in a certain sense, a smoothed

version of go Define the function rA by

O* (s)* (t)
rX(s,t) 0 s) lt)

v35 (1 + )2

-- i ! -35-



.4 it can be shown easily that

rA(sl,t) - f RA(lu)R (t,u)fo(U)dU- I

and again I + rX is the Green's function of a certain

differential operator. In addition, by methods similar to those

used in the proof of Theorem 6.1, we have, for all s,
i r),s~s) -1/2m

r(9,S) - as A + 0. (9.2)

It is now possible to state and prove the main result of this

section.

Theorem 9.1. Suppose that the conditions of Theorem 8.1 hold. For

each n, on a suitable probability space there exists a Gaussian

process yX(s) with mean zero and covariance function rA(s,t)

such that

g(s) = m%(s) + n/2Y (s) + errn,X(s)

where the functions m. and r. are as defined above and, given

6 > 0, the approximation error errn A is

- -1 -1/in -(m /2mOp{ (n X log n + X-14m-1)2)}

uniformly over a in 9 as A + 0 and n +.

Proof.

The result is a consequence of Lemma 5.5 on the approximation of

the $ by normal random variables. Note that the distribution of

Y does not depend on n, and so, as in Silverman (1976) and

(1978a), theorems about its behavior as A 0 can be combined
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with Theorem 9.1 to provide results for g under transparent

conditions connecting X and n.

Define the 8 as in Lemma 5.5 and define -A by

x (s)BI + x
VV

It is easily verified that y is a well defined random element

of S and is a Gaussian process with EXA(s) - 0 and

covtyx(s),y (t)) = r (s,t). Using (6.3) it follows that the error

process will satisfy

_I/.
CO (1 - n 2B)vs

err n,X(s) V V V x + g(s) - g1(s) (9.3)

Using Lemma 5.2, the supremum over s of the sum in (9.3) is,

given c > 0, dominated by a constant multiple of

+'2 -12(1 + -2,p-}/ (9.4)

Now substitute the bound of Lemma 5.5 on 18 - n- 2 V to show

that (9.4) is, with probability 1,

I{7 v3+(1 + p V)-21120(n-log n) W O( -(4+n) 4m -llog n)

by Lemma 5.3. Substituting this bound and (7.11) into (9.3)

completes the proof of Theorem 9. 1.

-37-
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It is easy to use (9.2) and Theorem 9.1 to construct

conditions under which r (tt)/2 {g(t) - m (t)) is asymptotically

standard normal and this is left to the reader to investigate.

10. DISCUSSION AND ACKNOWLEDGMENTS.

There are of course numerous questions still unanswered about

roughness penalty density estimates. Apart from those technical

questions raised in the body of this paper there are several

important points of a practical nature which have not been

discussed. Some heuristic calculations done by the author and not

included here suggest that the estimates of this paper may provide

a solution to the problem of finding estimates which are

automatically adaptive to the tails of the distributionj wost

existing methods either under or oversmooth the tails relativ.. to

the main part of the data. Another important problem is the design

of efficient and well understood data-based methods for choosing

the smoothing parameter, though it should be the case that

techniques from other density estimation methods can be adapted for

use here. Finally it is of course important to have good computer

algorithms for finding the estimates!

The author gratefully acknowledges useful discussions with

Dennis Cox, Vassilios Klonias, Tom Leonard, Finbarr O'Suileabhain,

Grace Wahba and James Wendelberger.
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